Special Considerations for Modeling Exposure-Response for Biologics and ADCs—Regulatory Perspective

Yaning Wang, Ph.D. Deputy Director Division of Pharmacometrics Office of Clinical Pharmacology OTS/CDER/FDA

Disclaimer: My remarks today do not necessarily reflect the official views of the FDA

Outline

- Motivating examples

 Biologics: Trastuzumab
 - -ADC: Ado-Trastuzumab Emtansine
- Methodology evaluation
- Summary

Background

Trastuzumab (Herceptin)

- Regimen approved for HER2-overexpressing breast cancer (8mg/kg followed by 6mg/kg q3w) was selected as the Phase 3 regimen for metastatic HER2-overexpressing gastric cancer
- Indication: metastatic HER2-overexpressing gastric cancer

Ado-Trastuzumab Emtansine (T-DM1)

- Trastuzumab linked to a small cytotoxic (microtubule inhibitor) molecule emtansine (DM1)
- Rationale for dosing regimen:
 - Phase 1 MTD=3.6 mg/kg q3w based on thrombocytopenia (grade 4)
 - Multiple phase 2 trials with 3.6 mg/kg q3w
 - One phase 3 trial comparing T-DM1 3.6 mg/kg IV q3w with lapatinib+capecitabine
- Indication: HER2-positive, metastatic breast cancer

Phase 3 Clinical Trial

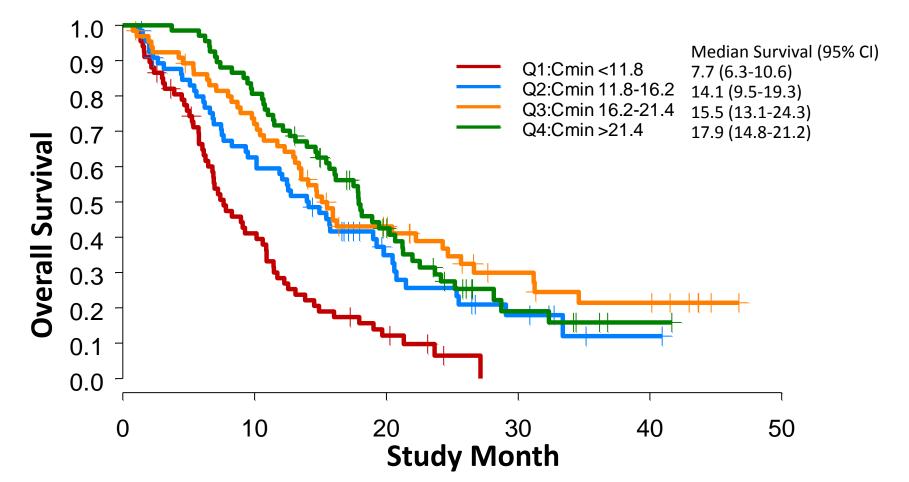
	Herceptin	T-DM1
Control	Cisplatin+capecitabine/ 5-Fluorouracil (FC)	Lapatinib +Capecitabine (LC)
Active	Trastuzumab + FC (H+FC)	Ado-Trastuzumab Emtansine

- Open-label, parallel, 1:1 randomization
- Primary endpoint*: overall survival

*: For T-DM1, progression-free survival (PFS) and OS are co-primary efficacy endpoints

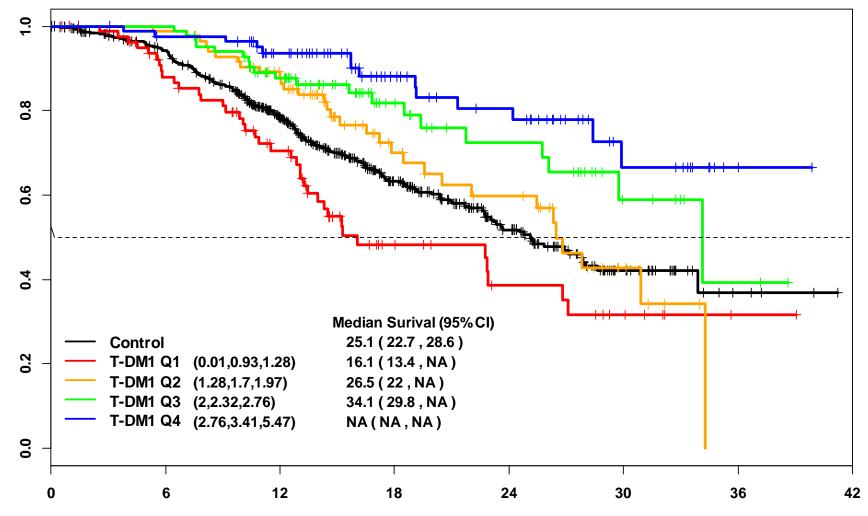
http://www.accessdata.fda.gov/drugsatfda_docs/label/2015/103792s5327lbl.pdf http://www.accessdata.fda.gov/drugsatfda_docs/nda/2013/125427Orig1s000StatR.pdf

Efficacy Results


		FC+H (N=298)	FC (N=296)
	No. Death (%)	221 (74.2)	227 (76.7%)
Herceptin	Median (95% Cl mos)	13.1 (11.9, 15.1)	11.7 (10.3, 13.0)
	Hazard ratio (95% CI)	0.80 (0.67, 0.97)	

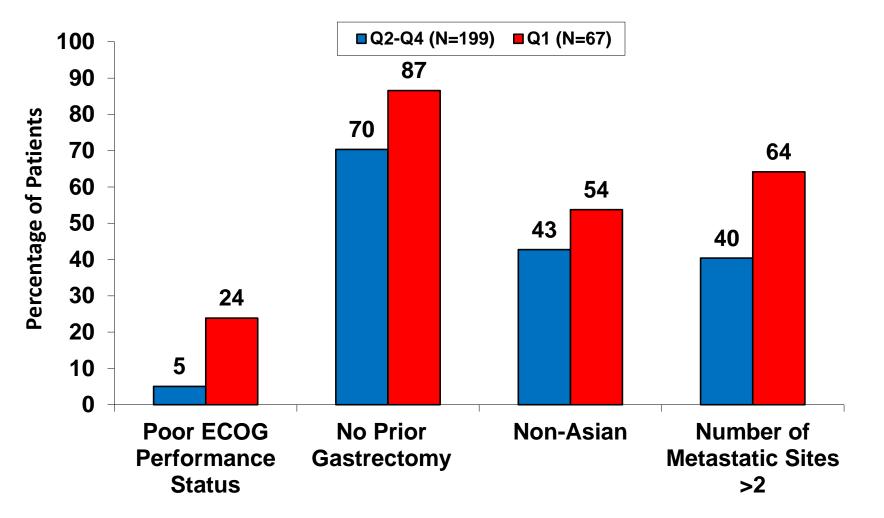
T-DM1		T-DM1 (N=495)	LC (N=496)
	No. Death (%)	149 (30.1%)	182 (36.7)
	Median OS (month)	30.9	25.1
	Hazard ratio (95% CI)	0.682 (0.548, 0.849)	

http://www.accessdata.fda.gov/drugsatfda_docs/label/2015/103792s5327lbl.pdf http://www.accessdata.fda.gov/drugsatfda_docs/nda/2013/125427Orig1s000StatR.pdf

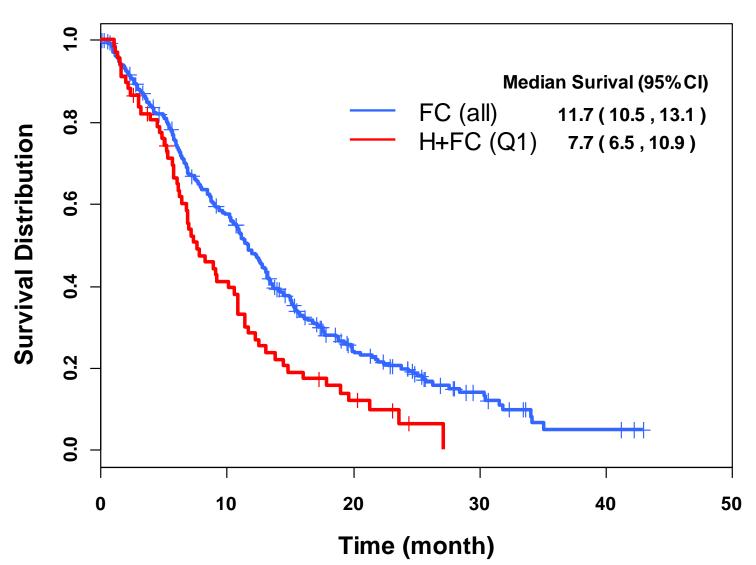

Exposure-Survival for Herceptin

Patients with Cmin <12 μ g/mL Had 7-10 Months Shorter Median OS

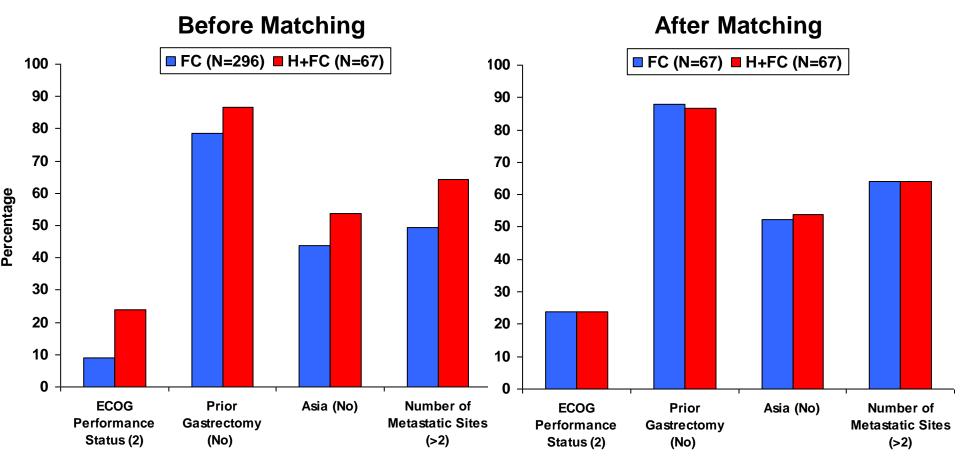
Yang, J. *et al*. The combination of exposure-response and case-control analyses in regulatory decision making. *J. Clin. Pharmacol*. 53, 160–166 (2013).


Exposure-Survival for T-DM1

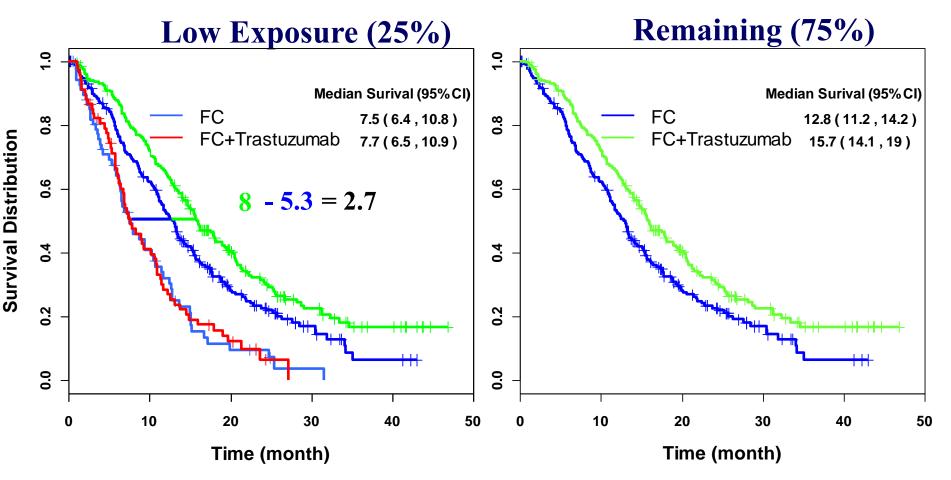
Time (month)


Wang, J. *et al*. Exposure-response relationship of T-DM1: insight into dose optimization for patients with HER2-positive metastatic breast cancer. *Clin Pharmacol Ther.* 2014 May;95(5):558-64 ⁷

Confounding Risk Factors for Survival (Herceptin Case)


Yang, J. *et al*. The combination of exposure-response and case-control analyses in regulatory decision making. *J. Clin. Pharmacol*. 53, 160–166 (2013).

Worse than Control Arm (Exposure=0)?

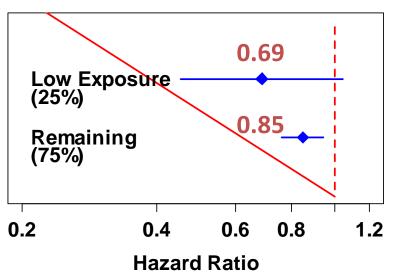

9

Case-Control to Extract Matching Subgroup from Control Arm

Yang, J. *et al*. The combination of exposure-response and case-control analyses in regulatory decision making. *J. Clin. Pharmacol*. 53, 160–166 (2013).

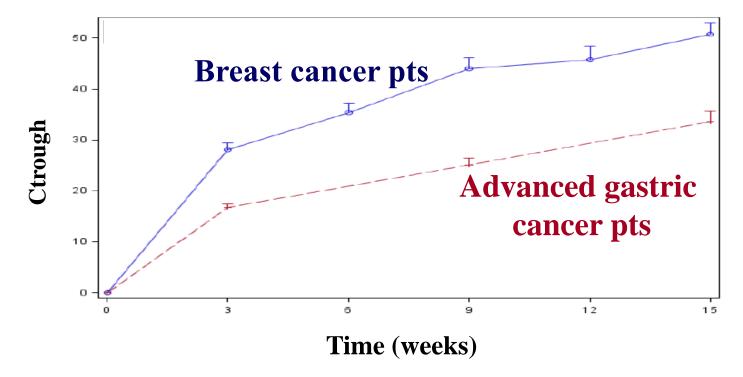
No Survival Benefit in Low Exposure Patients Compared to Matched Control

Yang, J. *et al*. The combination of exposure-response and case-control analyses in regulatory decision making. *J. Clin. Pharmacol.* 53, 160–166 (2013).


Reason for Lack of Benefit in Selected Subgroup (Matched)

- Low trastuzumab exposure (Cmin <12 ug/mL)
 - -Implication: higher dose may work
- Low exposure (high risk) patients may be non-responders?

-Implication: higher dose may not work


Support for Higher Dose

Per 10 ug/mL increase in Cmin

- All patients are sensitive to higher trastuzumab exposure
- Low exposure (high risk) patients may be more sensitive to higher trastuzumab exposure

Lower PK Exposure in Advanced Gastric Cancer Patients

• Steady state Ctrough 24-63% lower than that in breast cancer patients using the same dosing regimen

Multivariate Cox Regression for T-DM1

Comparison	HR (95% CI)*	P-value
TDM1 Q1 vs. Control	0.97 (0.65, 1.46)	0.89
TDM1 Q2 vs. Control	0.68 (0.44, 1.05)	0.080
TDM1 Q3 vs. Control	$0.40 \ (0.22, 0.72)$	0.0024
TDM1 Q4 vs. Control	0.35 (0.20, 0.63)	0.0005

*: After adjusting for covariates: Eastern Cooperative Oncology Group (ECOG), number of disease sites, prior anthracycline use, prior transtuzumab treatment, visceral disease, measurable disease, HER2 shed antigen and tumor burden

Wang, J. *et al*. Exposure-response relationship of T-DM1: insight into dose optimization for patients with HER2-positive metastatic breast cancer. *Clin Pharmacol Ther.* 2014 May;95(5):558-64

Regulatory Action

• Herceptin:

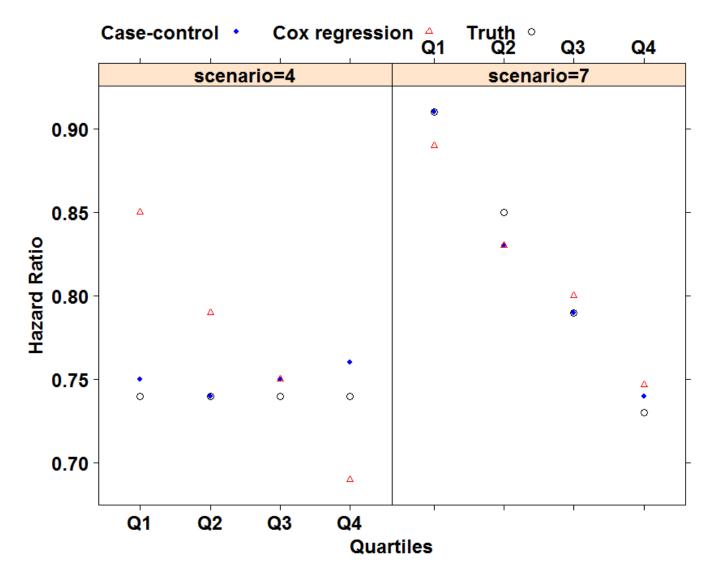
- Exposure-response (ER) and case-control analyses provided the rationale for post marketing requirement (PMR) study for a higher dose
- Trial design (dose selection, patient population and effect size assumption) for PMR study was based on ER and case-control analyses

• T-DM1:

 Postmarketing commitment to conduct exposure-response analyses for PFS, final overall survival, and safety utilizing data from trial BO25734/TDM4997 (TH3RESA)

Simulation to Compare Two Methods

- Various true exposure-response (ER) relationships were simulated (ECOG score, tumor size at baseline as covariates)
- Both multivariate regression analysis and the casecontrol analysis were applied to estimate the hazard ratio (HR) between two regimens within each quartile (Q1 to Q4 defined by exposure)
- Comparison of two methods:
 - Bias in HR estimates
 - Exposure-HR relationship across quartiles


Liu, J; Wang, Y; Zhao, L; Assessment of Exposure-Response (E-R) and Case-Control (C-C) Analyses in Oncology using Simulation Based Approach, 2015 American Conference of Pharmacometrics)

Scenarios Simulated

#	Scenarios	Underlying models	
1	Multivariate Cox model	$h(t) = h_0(t) \times exp(0.7 \times ECOG + 0.07 \times Tumor\ size - 0.012 \times C_{trough})$	
2	Parametric model + linear concentration effect	$h(t) = 0.065 \times exp(0.7 \times ECOG + 0.07 \times Tumor\ size - 0.012 \times C_{trough})$	
3	Parametric model + non-linear concentration effect (normal saturation)	$h(t) = 0.060 \times exp(0.625 \times ECOG + 0.085 \times Tumor \ size - 0.01 \\ \times \frac{60 \times C_{trough}}{30 + C_{trough}})$	
4	Parametric model + non-linear concentration effect (fast saturation)	$h(t) = 0.054 \times exp(0.675 \times ECOG + 0.104 \times Tumor \ size - 0.005 \times \frac{60 \times C_{trough}}{0.1 + C_{trough}})$	
5	Parametric model + linear concentration effect + an interaction term	$\begin{aligned} h(t) &= 0.055 \times exp(0.75 \times ECOG + 0.07 \times Tumor\ size - 0.012 \times C_{trough} \\ &+ 0.01 \times ECOG \times C_{trough}) \end{aligned}$	
6	Parametric model + non-linear concentration effect (normal saturation) + an interaction term	$h(t) = 0.054 \times exp(0.64 \times ECOG + 0.085 \times Tumor \ size - 0.014$ $\times \frac{60 \times (1 - ECOG) \times C_{trough}}{30 + C_{trough}})$	
7	Parametric model + non-linear concentration effect (fast saturation) + an interaction term	$h(t) = 0.054 \times exp(0.64 \times ECOG + 0.085 \times Tumor\ size - 0.008$ $\times \frac{60 \times (1 - ECOG) \times C_{trough}}{0.1 + C_{trough}})$	
h ₀	h ₀ (t), an unspecified baseline hazard function; ECOG, Eastern Cooperative Oncology Group; C _{trough} , drug trough concentration		

Liu, J; Wang, Y; Zhao, L; Assessment of Exposure-Response (E-R) and Case-Control (C-C) Analyses in Oncology using Simulation Based Approach, 2015 American Conference of Pharmacometrics)

Results for Two Scenarios (Flat Exposure-Response)

Comparison of Two Methods

- For all investigated scenarios, case-control analysis led to unbiased estimation of hazard ratio (HR) between Q1, Q2, Q3, Q4 and their corresponding matched control groups
- The apparent relationship between HR and the median exposure across the four quartiles reflects the true E-R relationship when there is no interaction between concentration and confounding risk factors.
- When interaction exists, the difference in HR across the four quartiles is the combined effects of exposure and difference in distributions of risk factors across quartiles.
- The apparent exposure-HR relationship across quartiles overestimated the E-R relationship under scenarios 5, 6 and 7 (more severe patients with less sensitivity or smaller Emax)

Liu, J; Wang, Y; Zhao, L; Assessment of Exposure-Response (E-R) and Case-Control (C-C) Analyses in Oncology 20 using Simulation Based Approach, 2015 American Conference of Pharmacometrics)

Summary

- Exposure-response analyses are routinely used in regulatory review to assess the appropriateness of the proposed dosing regimen
- Risk factors for overall survival have been found to be associated with drug exposure (higher the risk, lower the exposure), leading to confounded steep exposure-survival relationship
- Rigorous analyses should be conducted to adjust for the confounding factors
- The number of risk factors typically precludes the test of all possible interactions in a multivariate regression analysis
- The apparent exposure-HR relationship from matched subgroups should not be automatically treated as exposureresponse relationship

Acknowledgment

- Jun Yang
- Hong Zhao
- Christine Garnett
- Joga Gobburu
- Atik Rahman
- William Pierce
- Genny Schechter
- Patricia Keegan
- Jeff Summers

- Jian Wang
- Pengfei Song
- Qi Liu
- Sarah J. Schrieber
- Nitin Mehrotra
- Brian Booth
- Atiqur Nam Rahman
- Qiang Xu
- Shenghui Tang
- Jin-Zhong Liu
- Liang Zhao
- Scientists from the sponsor